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This paper presents a method for the dynamic analysis of a thin, elastic, isotropic
rectangular plate. The method is a hybrid of "nite element theory and classical thin plate
theory. The displacement functions are derived from Sanders' thin-shell equations, and are
expanded in power series. Expressions for mass and sti!ness are determined by precise
analytical integration. The free vibrations of rectangular plates, with various boundary
conditions, are studied by following this method. The results obtained reveal that the
frequencies calculated in this way are in good agreement with those obtained by others.
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1. INTRODUCTION

Rectangular plates are perhaps the most widely used structural elements. They are used in
such "elds as civil and naval engineering, and in aeronautical and space technology.
A knowledge of the free vibration characteristics of rectangular plates enables engineers to
design better and lighter structures. For this reason, the behaviour of rectangular plates has
been the subject of on-going research for more than a hundred years.

The "rst mathematical model of the behaviour of the plate membrane was formulated by
Euler in the 18th century. More than 50 years later, Lagrange developed the "rst correct
di!erential equation for the free vibration of plates. Some time later, Navier (1785}1836)
produced a method of calculating the mode shape and the frequencies for certain
boundary-value problems. He used the trigonometric series introduced by Fourier to
express the de#ection of the plate.

Kircho! (1824}1887) is considered the founder of modern plate theory which, by
analyzing plates with substantial de#ection, takes into account both the bending and the
stretching of the plates. He concluded that the non-linear e!ects should not be ignored when
dealing with large de#ections and that the natural frequencies and mode shapes can be
determined by the virtual work method. Love [1] applied Kircho!'s work to thick plates.

More recently, Leissa [2] summarized the work of several researchers in a book
containing more than 500 references. The needs of the modern aircraft industry have led to
advances in the study of rectangular plates. In 1956, Turner et al. [3] introduced the "nite
element method, which permits the complex-plate problem to be formulated, and, with the
advent of high-speed computers, a variety of numerical methods using matrix algebra have
been developed. Zienkiewicz [4] contributed to the formulation of di!erent kinds of "nite
elements. Bogner et al. [5, 6] worked on an element using bi-cubic interpolation functions
to simulate the displacement of the plate.

In order to predict both low and high frequencies with precision, we used the "nite
element method with many elements and developed a hybrid "nite element method which is
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derived from Sanders' classical shell theory [7]. Various elements have been developed for
close and open cylindrical [8}15], conical [16] and spherical [17] shells in vacuum or
containing a #uid at rest or in motion. Whilst several well-known "nite element codes such
as NASTRAN, ABAQUS or ANSYS can solve the free vibrations of a rectangular plate in
vacuum relatively easily, none can correctly predict the natural frequencies of a plate
submerged in #uid. We needed a general, thin, rectangular plate element that could later be
used for #uid}structure interaction analysis. The formulation of an analytical solution for
a general rectangular plate element is quite complex: we had to "nd displacement functions
compatible with both the plate equations of motion and the solution of a plate in contact
with #uid. We decided, therefore, to expand the homogeneous solution of the bi-harmonic
equation of the plate into a power series and, in so doing, we obtained a semi-analytical
solution in the form of a polynomial which can be used in classical "nite element theory.

In this article, we discuss the development of this element and its relative accuracy in
comparison with other methods. We "rst determined the fundamental equations of the
plate and, secondly, derived the displacement functions of plate theory and expanded them
in power series. With these displacement functions, we were able to determine the mass and
sti!ness matrices required by the "nite element method and, therefore, the free vibration
characteristics of the plate.

2. FUNDAMENTAL EQUATIONS FOR A THIN RECTANGULAR PLATE

2.1. EQUILIBRIUM EQUATIONS

To establish the equilibrium equations of the plate, we use Sanders' equations [7] for
cylindrical shells and assume the radius of the shell to be in"nite. There three equations take
into account both membrane e!ects and bending e!ects. Sanders based his equations on
Love's "rst approximation [1] for thin shell, and showed that all strains vanish for any
rigid-body motion. For the "nite element method this theory satis"es the convergence
criteria for small rigid-body motions.
Figure 1. Geometry of rectangular plate's mean surface.
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The geometry of the mean surface and the co-ordinate system used for this analysis are
shown in Figure 1.

The equilibrium equations for a rectangular plate, following Sanders' theory, are written as
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middle surface) and x and y are the co-ordinates of the plate. The unit vectors corresponding
to the stresses de"ned in equation (1) are indicated in Figure 2.

2.2. KINEMATICS EQUATIONS

The relation between the strain (e) and the displacement for a rectangular plate is given as
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where ; and < are the in-plane displacements and= the de#ection of the plate.
For an anisotropic and elastic material the relationship between stress and strain is

MpN"[P] MeN, (3)

where [P] is a 6]6 symmetric elasticity matrix. In the case of an isotropic material there is
no coupling between membrane and bending e!ects, and the only non-vanishing terms are
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where D and K are, respectively, the membrane and bending sti!ness de"ned as
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E being Young's modulus, l Poisson's ratio and t the plate thickness.
Next, we substitute equations (2) and (3) into the equilibrium equations to obtain the

three equations of motion in terms of the in-plane and normal displacements of the plate's



Figure 2. Di!erential element for a rectangular plate.
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means surface (;, <, =):
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The "rst two equations (5) describe the membrane behaviour and the last equation de"nes
the bending of a rectangular plate. By solving these equations, it is possible to "nd the
displacement function in terms of the nodal displacements.

3. DISPLACEMENT FUNCTIONS

3.1. SOLUTION OF THE DIFFERENTIAL EQUATIONS

In this instance, we are dealing with the case of isotropic material. As can be seen in
equation (5), the equations of motion are decoupled. It is possible, therefore, to consider the
membrane and bending equations to be two di!erent problems, each with its own solution.

The solution for the membrane di!erential equations in equation (5) is based on Szilard
[18]. We assume the solution to be a bi-linear polynomial expressing the nodal
displacements in ; and < are, respectively, the in-plane displacement in the x and
y directions as can be shown on an element in Figure 3.



Figure 3. Displacements and degrees of freedom of a rectangular plate.
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The polynomial expression will be
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where x and y are the element co-ordinate system and a and b are the length and width of
the plate corresponding to the x and y co-ordinates. These assumed displacement functions
contain the same number of unknown parameters C

i
as the number of nodal displacements

(2]4"8). The solution is rather crude but converges monotonically almost to the &&exact''
value for the problem of "nding the maximum de#ection [18].

In the case of bending, the bi-harmonic equation has a general solution of the following
form:
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where = is the normal de#ection of the plate element shown in Figure 3. Since it is
a complex matter to "nd the characteristic equation, we expand the solution in a Taylor
series. The number of terms in the series remains to be determined. Furthermore, the
number of degrees of freedom describing the motion of the plate in its normal direction is
governed by the number of terms in the series. Therefore, we add as many terms as the
hermitian bi-cubic polynomial used by Bogner [6]. The expanded polynomial, which
approximates the normal de#ection of the element, is
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Figure 4. Comparison of displacement functions; equation (8),=
p
(x, y): (**), Bogner [8];=

b
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the exact solution, equation (7), =(x, y): (} ) }).
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Equation (8) gives 16 unknown parameters A
i
corresponding, again, to the number of

degrees of freedom per element for bending. Figure 3 shows the nodal degrees of freedom
(=, L=/Lx, L=/Ly, L2=/LxLy) which relate to the bending motion. Instead of a rotational
degree of freedom about the z-axis, we have the second derivative of =, which gives the
twisting strain, and ensures a continuity of slope between the elements. This gives
conforming and compatible elements in bending.

Furthermore, when using a power series to express the displacement function, we
approach the &&exact'' solution of the bending equation more closely than Bogner et al. [5, 6]
did with the bi-cubic polynomial. The two displacement functions are compared to the
exact equation (7) in Figure 4.

3.2. DISPLACEMENT FUNCTIONS FOR A FINITE ELEMENT

We can write the displacement, ;, < and = in matrix form,

G
;
<
=H"[R] MCN, (9)

where [R] is a 3]24 matrix in which the components are the x and y terms of equations (6)
and (8) without the unknown constants. The vector MCN is given by

MCN"MC
1
,2, C

24
Nt. (10)

To determine these constants, we need to de"ne 24 boundary conditions for the "nite
element. These 24 boundary conditions will be the 24-degrees-of-freedom per element,
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which means 6-degrees-of-freedom per node as follows:
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where the d
i
's are the generalized nodal displacement and w

i,x
is the derivative of w

i
with

respect to x and so on. Then, we have to de"ne a transformation matrix [A] to relate the
displacement functions MC

i
N and the nodal displacements Md
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[A] is a 24]24 matrix listed in Appendix A. The terms of matrix [A] are obtained from
matrix [R] by going from node 1 to 4 and setting the value of x to 0 or a, and of y to 0 or b.
By multiplying equation (12) by [A]~1 and substituting into equation (9) we obtain
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where [N] is the displacement function matrix for a "nite element of the rectangular plate.

4. STRESS AND STRAIN VECTORS

The strain vector can be found by using equations (2) and (13):
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where [D] is a matrix containing the derivative operators from equation (2). After de"ning
the strain vector, we can use it and refer to equation (3) for the stress vector:
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5. MASS AND STIFFNESS MATRICES FOR ONE FINITE ELEMENT

Using the "nite element theory [4], the mass and sti!ness matrices may be expressed as
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where dA"dydx. The matrices [N], [P] and [B] are given in equations (13), (14) and (3).
Integrating equations (16) and (17) over x and y, we obtain
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TABLE 1

Constants and exponents for symmetric submatrices
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1 1 1/9 1/63504 1/3 1/3 1/4 1/4 1/756 1/400 1/450 1/756 2 2 5 15 1/180 0 0 0 0
1 2 1/6 1/18144 1/2 0 0 1/2 1/504 1/160 1/180 1/216 2 2 5 16 1/144 0 0 0 0
1 3 1/6 1/7560 0 1/2 1/2 0 0 1/120 1/8 1/90 0 0 6 6 1/400 1/20 1/9 1/18 1/20 2 2
1 4 1/4 1/6048 0 0 0 0 0 0 1/60 1/72 2 6 7 1/160 0 1/6 1/12 1/8 2
1 5 1/18144 1/216 1/160 1/180 1/504 2 2 6 8 1/120 0 0 1/6 1/6 2
1 6 1/5184 1/144 1/64 1/96 1/144 2 2 6 9 1/576 1/16 1/16 1/16 0 2
1 7 1/2160 0 1/48 1/72 1/60 0 2 6 10 1/160 1/8 1/6 1/12 0 2
1 8 1/1728 0 0 1/48 1/48 2 6 11 1/64 0 1/4 0 0
1 9 1/7560 1/90 1/120 1/90 0 2 6 12 1/48 0 0 0 0
1 10 1/2160 1/60 1/48 1/72 0 2 6 13 1/432 1/12 0 1/8 0 2
1 11 1/900 0 1/36 0 0 6 14 1/120 1/6 0 1/6 0 2
1 12 1/720 0 0 0 0 6 15 1/48 0 0 0 0
1 13 1/6048 1/72 0 1/60 0 2 6 16 1/36 0 0 0 0
1 14 1/1728 1/48 0 1/48 0 2 7 7 1/60 0 1/3 0 1/3 2
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2 5 1/5184 1/144 1/96 10/576 1/144 2 2 7 13 1/180 0 0 1/3 0
2 6 1/1440 1/72 1/24 1/36 1/40 2 2 7 14 1/48 0 0 1/2 0
2 7 1/576 0 1/16 1/48 1/16 2 7 15 1/18 0 0 0 0
2 8 1/432 0 0 1/24 1/12 2 7 16 1/12 0 0 0 0
2 9 1/2160 1/60 1/48 1/24 0 2 8 8 1/20 0 0 1 2
2 10 1/600 1/30 1/18 1/18 0 2 8 9 1/192 0 0 1/4 0
2 11 1/240 0 1/12 0 0 8 10 1/48 0 0 1/2 0
2 12 1/180 0 0 0 0 8 11 1/16 0 0 0 0
2 13 1/1728 1/48 0 1/16 0 2 8 12 1/8 0 0 0 0
2 14 1/480 1/24 0 1/12 0 2 8 13 1/144 0 0 1/2 0
2 15 1/192 0 0 0 0 8 14 1/36 0 0 1 0
2 16 1/144 0 0 0 0 8 15 1/12 0 0 0 0
3 3 1/3 1/756 0 1 0 0 0 1/20 0 1/9 2 8 16 1/6 0 0 0 0
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3 4 1/2 1/504 0 0 0 0 0 0 0 1/6 2 9 9 1/756 1/9 1/20 0 0 2
3 5 1/2160 0 1/48 1/24 1/60 2 9 10 1/216 1/6 1/8 0 0 2
3 6 1/576 0 1/16 1/16 1/16 2 9 11 1/90 0 1/6 0 0
3 7 1/216 0 1/8 0 1/6 2 9 12 1/72 0 0 0 0
3 8 1/144 0 0 0 1/4 2 9 13 1/504 1/6 0 0 0 2
3 9 1/900 0 1/36 1/9 0 9 14 1/144 1/4 0 0 0 2
3 10 1/240 0 1/12 1/6 0 9 15 1/60 0 0 0 0
3 11 1/90 0 1/6 0 0 9 16 1/48 0 0 0 0
3 12 1/60 0 0 0 0 10 10 1/60 1/3 1/3 0 0 2
3 13 1/720 0 0 1/6 0 10 11 1/24 0 1/2 0 0 2
3 14 1/192 0 0 1/4 0 10 12 1/18 0 0 0 0
3 15 1/72 0 0 0 0 10 13 1/144 1/4 0 0 0 2
3 16 1/48 0 0 0 0 10 14 1/40 1/2 0 0 0 2
4 4 1 1/252 0 0 0 0 0 0 0 1/3 2 10 15 1/16 0 0 0 0
4 5 1/1728 0 0 1/16 1/48 2 10 16 1/12 0 0 0 0
4 6 1/432 0 0 1/8 1/12 2 11 11 1/9 0 0 0 0
4 7 1/144 0 0 0 1/4 2 11 12 1/6 0 0 0 0
4 8 1/72 0 0 0 1/2 2 11 13 1/60 0 0 0 0
4 9 1/720 0 0 1/6 0 11 14 1/16 0 0 0 0
4 10 1/180 0 0 1/3 0 11 15 1/6 0 0 0 0
4 11 1/60 0 0 0 0 11 16 1/4 0 0 0 0
4 12 1/30 0 0 0 0 12 12 1/3 0 0 0 0
4 13 1/576 0 0 1/4 0 12 13 1/48 0 0 0 0
4 14 1/144 0 0 1/2 0 12 14 1/12 0 0 0 0
4 15 1/48 0 0 0 0 12 15 1/4 0 0 0 0
4 16 1/24 0 0 0 0 12 16 1/2 0 0 0 0
5 5 1/5040 1/60 1/60 1/252 1/90 2 2 13 13 1/252 1/3 0 0 0 2
5 6 1/1440 1/40 1/24 1/36 1/72 2 2 13 14 1/72 1/2 0 0 0 2
5 7 1/600 0 1/18 1/18 1/30 2 13 15 1/30 0 0 0 0
5 8 1/480 0 0 1/12 1/24 2 13 16 1/24 0 0 0
5 9 1/2016 1/20 1/40 1/60 0 2 14 14 1/20 1 0 0 0 2
5 10 1/576 1/16 1/16 1/48 0 2 14 15 1/8 0 0 0 0
5 11 1/240 0 1/12 0 0 14 16 1/6 0 0 0 0
5 12 1/192 0 0 0 0 15 15 1/3 0 0 0 0
5 13 1/1512 1/18 0 1/30 0 2 15 16 1/2 0 0 0 0
5 14 1/432 1/12 0 1/24 0 2 16 16 1 0 0 0 0
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where [S] and [G] are 24]24 real symmetrical matrices. For the mass matrix, [S] is
partitioned as

[S]"

S(u)4]4 F 0 F 0

2 F 2 F 2

0 F S(v)4]4 F 0

2 F 2 F 2

0 F 0 F S(w)16]16

. (20)

The elements of the symmetrical submatrices are given by
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where the constants A
ij

and B
ij

are found in Table 1.
In the case of the sti!ness matrix, [G] is partitioned as
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G (vu)4]4 F G (v)4]4 F 0
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. (22)

We can see from this matrix that a rectangular plate element has a coupling between u and
v in the membrane part and no coupling between membrane and bending for an isotropic
material. The elements of the submatrices are given by equations (23), where the constants
E(k)
ij

, k"1, 2,2, 8, and the exponents ¸
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are given in Table 1:
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6. CALCULATION AND DISCUSSION

6.1. FREE VIBRATIONS

The complete plate is subdivided into "nite elements, each of which is a smaller
rectangular plate. The positions of the nodal points are chosen in such a way that the local
co-ordinate system of the element is parallel to the global co-ordinate system of the plate.

Once the sti!ness and the mass matrices have been obtained it is possible to construct the
global matrices for the complete plate using the "nite element assembly technique. If N is
the number of nodes then [M] and [K] are two matrices of order 6N. In the case of free
vibration, the equations of motion are

[M] MdG
T
N#[K] Md

T
N"M0N, (24)
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where MdN
T

is the vector for global displacement of the whole shell:

Md
T
N"MMd

1
N, Md

2
N ,2 , Md

N
NNt, (25)

N being the number of nodes. We specify

Md
T
N"Md

0,T
N sin (ut#/), (26)

where / is the natural angular frequency and P is the phase angle.
By introducing equations (24) and (25), we obtain the typical eigenvalue and eigenvector

problem:

det [[K]!u2 [M]]"0. (27)

We have proven in earlier sections that the scattering equations are decoupled from the
bending equations. For this reason, the solution of equation (27) gives us both the bending
and in-plane modes. The shape of the eigenvector for each mode will permit us to
di!erentiate the bending modes from the in-plane modes.

6.2. CONVERGENCE

The accuracy of the "nite element method depends on the number of elements used to
discretize the physical problem. A preliminary set of calculations was undertaken to
determine the requisite number of "nite elements for an accurate determination of the
natural frequencies. Calculations were made with a rectangular steel plate having the
following properties: a"609)6 mm, b"304)8 mm, t"2)54 mm, E"196]109 N/m2,
l"0)3, o"7)86 kg/m3 and with the number of elements N"1, 2, 4, 8, 16, 32, 64. The
boundary conditions were the result of the plate being simply supported on all edges. The
results for the "rst six natural frequencies are given in Figure 5. We conclude that the
convergence of the system is fast. About eight elements are needed for convergence. For
convergence at higher frequencies, a larger number of elements must be used. The reason for
this is simple: since we are using polynomials to represent the mode shapes, we need more
degrees of freedom, and hence a greater number of elements, to have a satisfactory
representation of the higher mode shapes.
Figure 5. Non-dimensional natural frequency, X"u a2 (ot/K)1@2, of a simply supported rectangular plate as
a function of the number of "nite elements for the "rst six modes; m, n: (*), 1,1; (- - -), 2,1; () ) ) ) )), 3,1; (} ) }), 1,2;
(} ) ) }), 2,2; () ) ) ) ) ) )), 4,1.
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6.3. CALCULATIONS FOR RECTANGULAR PLATES

The eigenvalues of a uniform rectangular plate with di!erent boundary conditions may
be calculated in a simpler way. In fact, Leissa [2] gives a good summary and all the tables
needed to solve the kind of problems discussed here. Our main aim is to test the validity of
the mass and sti!ness matrices as developed in this paper.

We "rst determine the natural frequencies of the rectangular plate and compare that
calculation to its exact solution. This comparison enables us to give the relative accuracy of
the method for 64 elements. Figure 6 gives the "rst six mode shapes and natural frequencies
computed. By looking at the deformed shape, we can tell the number of axial modes in both
directions where m is the longest side (x-axis) and n is the shortest side (y-axis). The error
between the "nite element model and the exact solution is given in Table 2.

Table 2 shows fairly good results for the "nite element method as compared with the
exact solution. The error varies from 3 to 15% depending on the mode. As can be seen, the
TABLE 2

Relative error between the exact solution of a simply supported rectangular plate and a 64
,nite element model

m, n 1, 1 2, 1 3, 1 1, 2 2, 2 4, 1

Exact solution; f (Hz) 83)50 133)61 217)12 283)9 334)0 334)0
Our method; f (Hz) 76)16 114)69 191)27 275)44 303)94 305)19
% error 8)79 14)16 11)91 2)98 9)00 8)63

Figure 6. Computed mode shapes of the simply supported plate: (a) f
1,1

"76)16 Hz, (b) f
2,1

"114)69 Hz, (c)
f
3,1

"191)27 Hz, (d) f
1,2

"275)44 Hz, (e) f
2,2

"303)94 Hz, (f ) f
4,1

"305)19 Hz.



TABLE 3

Comparison of a cantilever rectangular steel plate natural frequencies

Frequency in Hz, for values of m of

n Type 1 2 3

1 Theoretical [19] 69)5 436 1220
NASTRAN 67)6 416)4 1151
Experimental [20] 64 405 1120
Our method 67)58 420)62 1170)41

3 Theoretical [19] 1610 2260
NASTRAN 1474 1996
Experimental [20] 1606 ND
Our method 1532.91 1798.72
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relative error does not increase as we increase the order of the mode. This could
be explained by the fact that we use a high order polynomial which approximates some
mode shapes more exactly than others. The error will now rely more on the ability of the
shape function to represent each mode shape than the number of elements or the order
of the mode.

We used a second set of calculations in order to compare our method with experimental
values and other numerical methods. The calculations were carried out using two di!erent
boundary conditions: clamped on the shortest side and simply supported on two opposite
edges. As there is no exact solution to the problem of the cantilevered plate, we veri"ed the
performance of our method against that of other numerical solutions. Results were
compared to the solution computed using a quadrilateral element with linear shape
functions of NASTRAN. A solution was also obtained by Martin [18], who used
a variational procedure similar to the Rayleigh}Ritz method for a cantilevered rectangular
steel plate of dimensions: a"130)0 mm, b"70)1 mm and t"1)35 mm. Our results are
shown in Table 3 and compared to those of Martin [19], NASTRAN and to the
experimental data of Grinsted [20]. Figure 7 shows the associated eigenvectors.

We calculated the natural frequencies of the cantilevered plate using an 8]8 element
model. As can be seen, the results obtained by this method are in satisfactory agreement
with those obtained using the other theory and with the experimental results. The natural
frequencies and mode shapes of the rectangular steel plate simply supported on the two
opposite shortest sides were also calculated. Since there is an analytical and an &&exact''
solution to the problem, the analysis increases our con"dence in the calculation of the
symmetrical model. To do this, we analyzed a steel plate which has the following
dimensions: a"609)6 mm, b"304)8 mm and t"2)54 mm. The results obtained by our
method were calculated using an 8]8 element model and are compared to the analytical
solution in Table 4. As can be seen, all the modes are computed with relatively good
accuracy.

7. CONCLUSION

The objective of this paper was to present a new method for deriving the displacement
functions of a thin rectangular plate and, subsequently, to use these displacement functions



Figure 7. Computed mode shapes of the cantilever plate: (a) m"1, n"1; (b) m"2, n"1; (c) m"3, n"1; (d)
m"1, n"3; (e) m"2, n"3.

TABLE 4

Natural frequencies (In Hz) for a rectangular steel plate simply supported on opposite edges
calculated numerically and analytically

m, n 1, 1 2, 1 3, 1 1, 3

Analytical solution 16)7 66)8 150)3 178)5
Our method 15)98 64)37 145)86 161)30
% error 4)31 3)64 2)95 9)636
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in dynamic analysis and #uid}structure interaction. The mass and sti!ness matrices of
a 24-degrees-of-freedom rectangular element were developed.

The convergence of the method was established and the natural frequencies were
obtained for various boundary conditions and di!erent modes. These results were
compared with those of other authors and theories and satisfactory agreement was found.
The advantage of this theory is that it is capable of modelling any non-uniform rectangular
plates subjected to any boundary conditions without any new investigations. It is true that
some results often give errors larger than 10%, but this is a numerical method which may
execute real existing cases and its main advantage compared to analytical method is its
#exibility. Our method has been tested with commercial FEM codes for the case of
rectangular plate in vacuum.

This method combines the advantage of "nite element analysis and the precision of
a formulation which uses displacement functions derived from this plate theory.
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A paper currently under preparation will deal with the dynamics of rectangular plates
submerged in #uid. A more general quadrilateral element will be used and further
investigation will be done on the displacement function in order to predict the natural
frequencies of anti-symmetrical modes.
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APPENDIX A: MATRIX DEFINITION

The matrix [A] is de"ned by
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APPENDIX B: NOMENCLATURE

a length of the rectangular plate
[A] de"ned by equation (12)
A

i
de"ned by equation (8), i"0, 1, 2, 3

b width of the rectangular plate
[B] de"ned by equation (14)
[C] de"ned by equation (10)
C

i
de"ned by equation (6)

D membrane sti!ness, Et/(1!v2)
[D] de"ned by equation (14)
E Young's modulus
E(k)
i,j

de"ned in equation (23), i"1, 2,2 , 16; j"1, 2,2 , 16
f
i,j

natural frequency (Hz)
[G] de"ned by equation (22)
G(u)

i,j
, G(v)

i,j
, G(w)

i,j
de"ned by equation (23), i"1, 2,2 , 16; j"1, 2,2 , 16

[k] sti!ness matrix of one element
K bending sti!ness, Et3/12(1!v2)
[K] sti!ness matrix of the total plate
¸
i,j

de"ned in equation (23), i"1, 2,2 , 16; j"1, 2,2 , 16
[m] mass matrix of one element
m axial mode number parallel to the x-axis
[M] mass matrix of the total plate
M

i,j
de"ned in equation (23), i"1, 2,2 , 16; j"1, 2,2 , 16

M
x,x

, MM
xy

, M
y,y

bending moments of a rectangular plate
n axial mode number parallel to the y-axis
N number of "nite elements
[N] de"ned by equation (13)
N

x,x
, N

x,y
, N

y
stress components of a rectangular plate

[P] elasticity matrix
P
i,j

terms of the elasticity matrix, i"1, 2,2 , 6; j"1, 2,2 , 6
[S] de"ned by equation (20)
S(u)
i,j

, S(v)
i,j

, S(w)
i,j

de"ned by equation (21), i"1, 2,2 , 16; j"1, 2,2 , 16
t thickness of the rectangular plate
u
i
, v

i
, w

i
nodal displacements, i"1,2 , 4

;, <, = in-plane and normal displacement of a rectangular plate
x, y length and width co-ordinate of the plate
w
i,x

, w
i,y

, w
i,xy

nodal rotations and twisting, i"1,2 , 4
=

p
displacement function de"ned by equation (8)

Greek letters
d
i

degree of freedom at node i, i"1,2 , 4
Md

i
N degrees of freedom at node i

Md
T
N degrees of freedom for the total plate

Md
0,T

N amplitude of the plate motion
MeN strain vector
e
x
, e

y
, e

xy
deformations of the plate reference surface

i
x
, i

y
, i

xy
changes in curvature and twisting of the plate reference surface

o density of the plate material
MpN stress vector
l Poisson's ratio
u angular natural frequency, rad/s~1
X non-dimensional frequency, ua2 (ot/K)1@2
W phase angle


	1. INTRODUCTION
	2. FUNDAMENTAL EQUATIONS FOR A THIN RECTANGULAR PLATE
	Figure 1
	Figure 2

	3. DISPLACEMENT FUNCTIONS
	Figure 3
	Figure 4

	4. STRESS AND STRAIN VECTORS
	5. MASS AND STIFFNESS MATRICES FOR ONE FINITE ELEMENT
	TABLE 1

	6. CALCULATION AND DISCUSSION
	Figure 5
	Figure 6
	TABLE 2
	TABLE 3

	7. CONCLUSION
	Figure 7
	TABLE 4

	REFERENCES
	APPENDIX A: MATRIX DEFINITION
	APPENDIX B: NOMENCLATURE

